Plumeria Documentation
Release 0.1

sk89q

Aug 20, 2017

Contents

Considerations 3
Installation 5
2.1 WINdOWS o o e e e e e 5
2.2 Debian/Ubuntu e e e e e e e e e e e e 5
2.3 Mac OS X . . e e e e s 6
Configuration 7
3.1 Enabling Plugins e e e e e e 7
3.2 Plugin Configuration e e e e 8
3.3 PermiSSions e e e e e e e e e e e e e e e e 8
3.3.1 Bot AdminiStrators e e e e e e e e e e e e 8
3.3.2 Server Administrators i e e e e e e e e e e e e e e e e e 8
Plugins 9
4.1 ALIaS . . . 9
4.1.1 Handling Piping o o e e e e e e e e e 9
412 INPUL. . . o e e e e e e e e e e e e 9
Writing Plugins 11
5.1 Tutorial L e e e e e e e e e 11
5.1.1 YourFirst Command e e 11
5.1.2 Fetching URLs e 12
5.1.3 Running Your Plugin 13
5.1.4 Adding Configuration Lt 13
5.1.5 RateLimiting oo L e e e e e 14
Indices and tables 15

Plumeria Documentation, Release 0.1

Contents:

Contents 1

Plumeria Documentation, Release 0.1

2 Contents

CHAPTER 1

Considerations

Plumeria is best run from some sort of dedicated server, either at home or in a proper data center, that is on a fast
Internet connection. However, Plumeria will also work on your home computer, though perhaps not as quickly.

Tip: As of writing, students can get a year of free VPS hosting by signing up for the GitHub education pack.

Regardless of your choice, there are some considerations to keep in mind when hosting Plumeria — or any kind of
bot.

e The bot will utilize CPU when it is invoked. Most commands won’t use any appreciable processing power, but,
for example, the image commands could (for brief amounts of time).

* If the system running the bot does not have a good Internet connection, some commands (image downloading-
related) could saturate the connection. It also means that the bot will respond slowly.

* The public of the IP of the system running the bot can be exposed. This is merely a consequence of features like
image fetching.

* Any sort of bot, application, or website that lets people fetch URLSs is susceptible to a problem called Server-
Side Request Forgery (SSRF). For example, normally your router’s website can’t be accessed from outside the
Internet, but a program running on your computer would be considered on the inside. Fortunately, Plumeria
does have protection in the form of checking where names and addresses resolve to, but this protection doesn’t
extend to certain plugins that invoke outside programs (like the website capture plugin).

https://education.github.com/pack

Plumeria Documentation, Release 0.1

4 Chapter 1. Considerations

CHAPTER 2

Installation

Windows

1. Install Python 3.5.
2. Download Plumeria (or via Git if you know how to use Git).

3. Double click install.bat. If successful, it should say “SUCCESSFUL” at the very end. If not, please file an
issue.

Try double clicking run_default.bat to run the bot. Since it hasn’t been configured yet, nothing will happen, but it
should still start.

Debian/Ubuntu

Make sure that you have Python 3.5+ installed. Try running python3 in shell and see what version is printed.

1. Install system packages:

sudo apt—-get install python3-pip

2. Install:

pip3 install virtualenv
git clone https://github.com/sk89qg/Plumeria.git plumeria
cd plumeria
python3 -m virtualenv .venv
.venv/bin/activate
pip install -r requirements.txt
cp config.ini.example config.ini

Try running the bot:

https://www.python.org/downloads/
https://github.com/sk89q/Plumeria/archive/master.zip
https://github.com/sk89q/Plumeria/issues
https://github.com/sk89q/Plumeria/issues

Plumeria Documentation, Release 0.1

’.venv/bin/python plumeria-bot.py

Since it hasn’t been configured yet, nothing will happen, but it should still start.

Mac OS X

1. Install Python 3.5.
2. If you haven’t installed Git yet, run git in Terminal and say yes to the prompt.

3. Open Terminal in the directory where you want to download Plumeria and run these commands:

pip3 install virtualenv
git clone https://github.com/sk89qg/Plumeria.git plumeria
cd plumeria
python3 -m virtualenv .venv
.venv/bin/activate
pip install -r requirements.txt
cp config.ini.example config.ini

Try running the bot:

.venv/bin/python plumeria-bot.py

Since it hasn’t been configured yet, nothing will happen, but it should still start.

6 Chapter 2. Installation

https://www.python.org/downloads/

CHAPTER 3

Configuration

Without any extra parameters, Plumeria will use config.ini to store configuration. If the file doesn’t exist, then
Plumeria will create it. Plumeria will update a configuration file with new values on start.

You can edit this configuration file with any text editor. Windows users may want to use an editor like Notepad++ for
more editing features like longer undo history.

Rather than config. ini, a different configuration file can be used by passing it as an argument:

’./plumeria—bot.py —-—config something_else.ini

Enabling Plugins

If no plugins are enabled (which is the case if the configuration file has just been created), the only content of the file
will be a section to control which plugins are to be loaded:

[plugins]
plumeria.plugins.message_ops = True
plumeria.plugins.figlet = True
plumeria.plugins.string = False
plumeria.plugins.webserver = True
plumeria.plugins.memetext = False
plumeria.plugins.imdb = True
plumeria.plugins.gravatar = True

and so on

You can change entries to True to turn on the plugin and False to turn off the plugin.

If you have no plugins enabled, Plumeria will start but it will sit and do nothing.

https://notepad-plus-plus.org/download/v7.html

Plumeria Documentation, Release 0.1

Plugin Configuration

Most plugins will have some extra configuration for you to change. However, configuration for a plugin will only be
added to your file when the plugin is loaded, so you have to enable the plugin and then (re)start Plumeria to see those
settings.

For example, until you actually enable the Discord transport plugin and then run Plumeria, you wouldn’t see the
following section:

[discord]

The Discord token to login with (overrides password login if set)
token =

The Discord password to login with

password =

The Discord username to login to

username =

Permissions

Bot Administrators

A few commands are available only to users deemed “bot administrators.”

To add yourself as a bot administrator, you will first need to find you Discord user ID. One way to find your user
ID is to go to your Discord account settings, “Appearance,” and check ‘“Developer Mode” to allow you to right click
yourself and choose “Copy ID.” Once you have your ID, add it to your configuration file in the following section:

[perms]
admin_users = 0000000000000000

Server Administrators

Some functions, like creating server aliases, is limited to users deemed ‘““server bot administrators.”

Users are identified by having a role named bot —admin on a particular server.

8 Chapter 3. Configuration

CHAPTER 4

Plugins

Documentation for individual plugins is available below.

Alias

The alias plugin allows you to create new commands in a server that run existing commands. Only server bot admin-
istrators can create or delete aliases, but anyone can use them.

Aliases can be created using the alias command:

alias hello say hello

The first parameter is the name of the command, and the subsequent arguments refer to the command that will be run.
The command that will be run must be a valid command! In this example, say hello uses the say command to
return a message.

Aliases can be deleted with the alias delete command:

alias delete hello

Handling Piping

If you want to pipe commands in the alias command (rather than pipe the output of the alias command), you need to
escape the vertical bars with a caret symbol (*):

alias rock_song tagtop rock | yt

Input

If you want your alias to accept input, such as:

Plumeria Documentation, Release 0.1

hello bob

You will have to grab that input using the get input command (there is a list of “variables” when a command is
run, and get reads the “input” variable that the alias plugin sets). For example, a command to find a cover version of
a song on YouTube could be written as:

alias findcover get input | yt (cover)

10 Chapter 4. Plugins

CHAPTER B

Writing Plugins

Plugins for Plumeria are written in Python 3.

Plugins can either be standalone Python packages, or they can also be placed into the plugins folder. Plugins can be
single module files or directories.

Tutorial

Let’s start our first plugin! Create a new file in the plugins folder and name it my_first_plugin.py.

Your First Command

We’re going to create a new fetch command that downloads the content of a webpage.

import re
from plumeria.command import commands, CommandError

@commands.register ("fetch", "download", "get page", category="Utility")
async def fetch (message):

mmn

Fetches a webpage.
Example: :

/fetch http://www.google.com

mmn

g = message.content.strip()

if not re.search(""https://", re.I): # naive URL checking
raise CommandError ("That's not a wvalid URL")

more to come

11

Plumeria Documentation, Release 0.1

A command is created by decorating a function with commands . register (), which takes a list of aliases. Spaces
are acceptable characters in aliases and can be used to create sub-commands. A category is required for the help page
so related commands are grouped together to make them easier to find. The actual name of the function doesn’t matter,
but there can only be one parameter, which is the message object that contains information about what was sent and
who sent it.

Docstrings are shown on the help page for commands and they should be formatted in reStructuredText, and example
of a docstring can be seen above. Docstrings in Python are surrounded by three quotation marks (“’”) and appear first
in a function or object.

Fetching URLs

Because Plumeria is written to be asynchronous, we’ll use the aiohttp library to make HTTP requests. To improve
security, we’ll use the DefaultClientSession object that comes with Plumeria.

import re
from plumeria.command import commands, CommandError
from plumeria.util.http import DefaultClientSession

@commands.register ("fetch", "download", "get page", category="Utility")
async def fetch (message) :

mmn

Fetches a webpage.
Example: :

/fetch http://www.google.com

mmn

url = message.content.strip/()
if not re.search(""https://", re.I): # naive URL checking
raise CommandError ("That's not a valid URL")

with DefaultClientSession() as session:
async with session.get (url) as resp:
if require_success and resp.status != 200:
raise CommandError ("HTTP code is not 200; got {}".format (resp.status))
return await resp.text ()

We return text directly from the fetch () method, which is assumed to be Markdown. If we want to return a message
with attachments or other bells and whistles, we would need to return a plumeria.message.Response object
rather than a string, but that will be explained later.

To see how the HTTP client is used, see the documentation for aiohttp.

Tip: The function above is prefixed with async, which means that it is willing to give up control of the currently
running “thread” so that something else can run. Python will manage what else will run for you, but you inform
Python that you want to give up control by awaiting another function. In the example above, the function awaits the
session.request () function (in the form of the async with) because requesting a webpage requires waiting
for a remote server to respond, and then further on, the code awaits resp . text () because the other’s server response
must be fully received.

12 Chapter 5. Writing Plugins

http://aiohttp.readthedocs.io/en/stable/client.html

Plumeria Documentation, Release 0.1

Running Your Plugin

If you have plugins in the plugins folder, Plumeria will be able to pick them up, but you still have to tell Plumeria to
load your plugin. Open up your configuration file and add the following to the [plugins] section:

my_first_plugin = True

Restart Plumeria and see if your new plugin is loaded in the log, and then try the . fetch https://github.
com/sk89qg/Plumeriae command.

Adding Configuration

Configuration can be declared at the top of a file using config.create (), whichreturnsaplumeria.config.
Setting object that can be used to read the value from the configuration at a later point.

from plumeria import config

timeout = config.create("my_first_plugin", "fetch_ timeout9", type=int, fallback=4,
comment="The maximum amount of time to wait for a webpage to
—~load")

When the value of t imeout is required, simply call the object:

timeout ()

Warning: Configuration data can change while Plumeria is running.

We’ll integrate this timeout into our command:

import re

from plumeria import config

from plumeria.command import commands, CommandError
from plumeria.util.http import DefaultClientSession

timeout = config.create("my_first_plugin", "fetch_timeout9", type=int, fallback=4,
comment="The maximum amount of time to wait for a webpage to_
—~load")

@commands.register ("fetch", "download", "get page", category="Utility")
async def fetch (message):

mmn

Fetches a webpage.
Example: :

/fetch http://www.google.com

mmwn
url = message.content.strip/()

if not re.search(""https://", re.I): # naive URL checking
raise CommandError ("That's not a wvalid URL")

with DefaultClientSession() as session:
async with session.get (url, timeout=timeout()) as resp:

5.1. Tutorial 13

Plumeria Documentation, Release 0.1

if require_success and resp.status != 200:
raise CommandError ("HTTP code is not 200; got {}".format (resp.status))
return await resp.text ()

Rate Limiting

To reduce abuse, we will want to limit how often the command can be used. There are two types of rate limits:
* A command cost, which is used to determine how many commands can be chained together
* A rate limit, which simply controls the rate of calls

By default, all commands have a cost of 1.0. Commands that have minimal CPU and network impact should have
lower costs. Costs can be adjusted when registering the command:

@commands.register ("fetch", "download", "get page", category="Utility", cost=1.0)

For our fetch command, we won’t adjust the cost.

However, we do want to reduce how frequently the command can be used, so we’ll apply a rate limit. Rate limits are
per-user, per-channel, and per-server. Rate limits are simply added by applying a @rate_1limit () decorator.

from plumeria.util.ratelimit import rate_limit

@commands.register ("fetch", "download", "get page", category="Utility")
@rate_limit ()
async def fetch (message) :

etc.

Rate limits can be adjusted by changing burst size and fill rate:

@commands.register ("fetch", "download", "get page", category="Utility")
@rate_limit (burst_size=10, fill_rate=0.5)
async def fetch (message) :

etc.

Warning: @rate_limit () must appear after the command registration.

14 Chapter 5. Writing Plugins

CHAPTER O

Indices and tables

* genindex
* modindex

e search

15

	Considerations
	Installation
	Windows
	Debian/Ubuntu
	Mac OS X

	Configuration
	Enabling Plugins
	Plugin Configuration
	Permissions
	Bot Administrators
	Server Administrators

	Plugins
	Alias
	Handling Piping
	Input

	Writing Plugins
	Tutorial
	Your First Command
	Fetching URLs
	Running Your Plugin
	Adding Configuration
	Rate Limiting

	Indices and tables

